
T6.1

A Technical View
of System Analysis
and Design6

Technology Guides

T6.1 Developing an IT Architecture

T6.2 Overview of the Traditional Systems
Development Life Cycle

T6.3 Alternative Methods and Tools for
Systems Development

T6.4 Component-Based Development
and Web Services

T1 Hardware
T2 Software
T3 Data and Databases
T4 Telecommunications
T5 The Internet and the Web
T6 A Technical View of System Analysis and Design

Technology
Guide

�

T6.2 Technology Guide A Technical View of System Analysis and Design

An IT architecture is a conceptual framework for the organization of the IT infra-

structure and applications. It is a plan for the structure and integration of IT resources

and applications in the organization.

T6.1 Developing an IT Architecture

A SIX-STEP
PROCESS

Once the corporate strategy team or steering committee decides on potential appli-

cations, an architecture must be developed. Koontz (2000) suggested a six-step

process for developing an IT architecture. These steps, described below, constitute a

hierarchy of IT architecture.

Step 1: Business goals and vision. This step, in which the system analyst reviews

the relevant business goals and vision, is sometimes referred to as “business

architecture” (see Chapters 2 and 15).

Step 2: Information architecture. In this step a company analyst defines the infor-

mation necessary to fulfill the objectives of Step 1. Here, one should exam-

ine each objective and goal, identify the information currently available, and

determine what new information is needed. All potential users need to be

involved.

Step 3: Data architecture. Once you know what information must be processed,

you need to determine a data architecture—that is, exactly what data you

have and what you want to get from customers, including Web-generated

data. Of special interest is the investigation of all data that flows within the

organization and to and from your business partners.

The result of your investigation will probably show that data are

everywhere, from data warehouses to mainframe files to Excel files on

users’ PCs. You need to conduct an analysis of the data, understanding its

use, and examine the need for new data. This is when you need to think

about how to process this data and what tools to use. If large amounts of

data are used, tools such as Microsoft Transaction Server,Tuxedo, or CICS

for mainframe data should be considered. Also, think about data mining

and other tools. All this analysis needs to be done with an eye toward

security and privacy.

Step 4: Application architecture. At this point, you define the components or

modules of the applications that will interface with the required data

defined in Step 3. In this step you will build the conceptual framework of

an application, but not the infrastructure that will support it. An example

is shown in Figure T6.1.

Many vendors, such as IBM, Oracle, and Microsoft, offer sophisticated

IT application platforms that can significantly reduce the amount of code

that programmers need to write. These application platforms also explain

how the application should be structured. In this step, you can decide on a

specific vendor-defined application architecture, such as Microsoft Distrib-

uted Network Architecture (DNA).

Other factors that must be considered are scalability, security, the num-

ber and size of servers, and the networks. The need to interface with legacy

systems and with sales, ERP, accounting, and human resources data must be

considered. In addition the ability to read real-time data is also important.

The major output of this step is to define the software components that

meet the data requirements. For example, to deal with updated, real-time

information, one may consider IBM’s MQSeries or Microsoft MSMQ.

Step 5: Technical architecture. During the previous steps, designers informally

considered the technical requirements. In this step, they must formally

examine the specific hardware and software required to support the analy-

sis in the previous steps.An inventory of the existing information resources

is made, and an evaluation of the necessary upgrades and acquisitions is

performed.

At this stage, designers must also examine the middleware needed for

the application. EC applications require a considerable amount of transac-

tion processing software.The more scalability and availability required, the

more you need to invest in additional application servers and other hard-

ware and software.

When selecting a programming language, designers may consider Java,

Visual Studio, C11, CGI, and even COBOL, depending on the application.

Also in this step, the operating systems, transaction processors, and net-

working devices required to support the applications must be decided on.

Obviously, you want to leverage your existing IT resources, but this may

not be the optimal approach.

Step 6: Organizational architecture. An organizational architecture deals with the

human resources and procedures required by Steps 1 through 5. At this

point, the legal, administrative, and financial constraints should be exam-

ined. For example, a lack of certain IT skills on your team may require hir-

ing or retraining. Partial outsourcing may be a useful way to deal with skill

deficiencies.

In the worst-case scenario, you outsource the entire job, but you can

give the architecture to the vendor as a starting point. Also, vendor selec-

tion can be improved if the architectures (business, information, data,

application, and technical) are considered.

T6.1 Developing an IT Architecture T6.3

Legacy
system

Database LAN

B2B
B2B

B2C Application Server

Travel Agency

Application Integration

CRM
System

Corporate
clients

Individual
customers

Car rental

CUSTOMERS SUPPLIERS

Internet orInternet or
ExtranetExtranet

Internet or
Extranet

Intranet

Airlines
ERP
system Hotels

Firewall

Firewall

Internet

Web
Server

Figure T6.1 Architecture
of an online travel agency.

CONCLUSION
Creating IT architecture may be a lengthy process, but it is necessary to go

through it. You may want to develop metrics to help you to track the effectiveness

of your IT architecture, and you certainly need to document the process and out-

put of each step.

Once the IT architecture has been decided on, a development strategy can be

formulated.

T6.4 Technology Guide A Technical View of System Analysis and Design

The systems development life cycle (SDLC) is the traditional systems development

method used by organizations for large IT projects such as IT infrastructure. The

SDLC is a structured framework that consists of sequential processes by which

information systems are developed. As shown in Figure T6.2, these processes

include: investigation, analysis, design, programming, testing, implementation, oper-

ation, and maintenance. The processes, in turn, consist of well-defined tasks. Large

projects typically require all the tasks, whereas smaller development projects may

require only a subset of the tasks.

Other models for the SDLC may contain more or fewer than the eight stages

we present here. The flow of tasks, however, remains largely the same, regardless of

the number of stages. In the past, developers used the waterfall approach to the

SDLC, in which tasks in one stage were completed before the work proceeded to

the next stage. Today, systems developers go back and forth among the stages as

necessary.

Within the waterfall approach, there is an iterative feature. Iteration is the revis-

ing of the results of any development process when new information makes this

revision desirable. Iteration does not mean that developments should be subjected

to infinite revisions, which would never allow systems to be implemented and uti-

lized. It does mean that developers must evaluate any new development informa-

tion they come across to determine whether it warrants causing revisions to the

existing development. It is especially important for e-commerce development

because EC systems must be constantly evolving to meet new demands of their

users and to stay ahead of the competition.

Systems development projects produce desired results through team efforts.

Development teams typically include users, systems analysts, programmers, and tech-

nical specialists. Users are employees from all functional areas and levels of the organ-

ization who will interact with the system, either directly or indirectly. Systems analysts
are information systems professionals who specialize in analyzing and designing

T6.2 Overview of the Traditional Systems Development Life Cycle

Go Back to a Previous Stage or Stop

(4) Programming

(5) Testing

(6) Implementation

(7) Operation

(8) Maintenance

(1) Systems Investigation

(2) Systems Analysis

(3) Systems Design

Figure T6.2 An eight-
stage system development
life cycle (SDLC).

information systems. Programmers are information systems professionals who modify

existing computer programs or write new computer programs to satisfy user require-

ments. Technical specialists are experts on a certain type of technology, such as data-

bases or telecommunications. All people who are affected by changes in information

systems (e.g., users and managers) are known as systems stakeholders, and are typically

involved by varying degrees and at various times in the systems development.

In the remainder of this section, we will look at each of the processes (phases)

in the eight-stage SDLC.

T6.2 Overview of the Traditional Systems Development Life Cycle T6.5

SYSTEMS
INVESTIGATION
(STEP 1)

Systems development professionals agree that the more time invested in under-

standing the business problem to be solved, in understanding technical options for

systems, and in understanding problems that are likely to occur during develop-

ment, the greater the chance of successfully solving the problem. For these reasons,

systems investigation begins with the business problem (or business opportunity).

Problems (and opportunities) often require not only understanding them from

the internal point of view, but also seeing them as organizational partners (suppliers

or customers) would see them. Another useful perspective is that of competitors.

(How have they responded to similar situations, and what outcomes and additional

opportunities have materialized?) Creativity and out-of-the-box thinking can pay big

dividends when isolated problems can be recognized as systemic failures whose

causes cross organizational boundaries. Once these perspectives can be gained, those

involved can also begin to better see the true scope of the project and propose possi-

ble solutions.Then, an initial assessment of these proposed system solutions can begin.

Feasibility Studies. The next task in the systems investigation stage is the feasibil-

ity study. The feasibility study determines the probability of success of the proposed

project and provides a rough assessment of the project’s technical, economic, orga-

nizational, and behavioral feasibility. The feasibility study is critically important to

the systems development process because, done properly, the study can prevent

organizations from making costly mistakes (like creating systems that will not work,

will not work efficiently, or that people cannot or will not use). The various feasibil-

ity analyses also give the stakeholders an opportunity to decide what metrics to use

to measure how a proposed system (and later, a completed system) meets their var-

ious objectives.

Technical Feasibility. Technical feasibility determines if the hardware, software,

and communications components can be developed and/or acquired to solve the

business problem. Technical feasibility also determines if the organization’s existing

technology can be used to achieve the project’s performance objectives.

Economic Feasibility. Economic feasibility determines if the project is an

acceptable financial risk and if the organization can afford the expense and time

needed to complete the project. Economic feasibility addresses two primary ques-

tions: Do the benefits outweigh the costs of the project? Can the project be com-

pleted as scheduled?

Three commonly used methods to determine economic feasibility are return on

investment (ROI), net present value (NPV), and breakeven analysis. The first two

were discussed in Chapter 14: Return on investment is the ratio of the net income

attributable to a project divided by the average assets invested in the project.The net
present value is the net amount by which project benefits exceed project costs, after

allowing for the cost of capital and the time value of money. Breakeven analysis
determines the point at which the cumulative cash flow from a project equals the

investment made in the project.

Determining economic feasibility in IT projects is rarely straightforward, but it

often is essential. Part of the difficulty stems from the fact that benefits often are intan-

gible (as discussed in Chapter 14).Another potential difficulty is that the proposed sys-

tem or technology may be “cutting edge,” and there may be no previous evidence of

what sort of financial payback is to be expected. Example: ROI analysis at Sears.

E X A M P L E : Sears Demands ROI Analysis for Handheld
Computer System Dennis Honan, an IS executive at retailer Sears, Roebuck &

Co., is a veteran of what he calls the company’s “ROI culture.” Honan, VP of Infor-

mation Systems for Sears’s Home Services business, got approval to spend some

$20 million to equip the unit’s 14,000-person service staff with handheld PCs. The

overriding goal of the project was to improve the efficiency of Sears’s service tech-

nicians. Not only were they to be given handheld computers, but the devices would

also be linked by wireless WANs to Sears’s databases. Honan projected an average

6 to 8 percent gain in the technicians’ productivity, mainly because the setup would

let them request price estimates, check availability for appliance parts, place orders,

receive software upgrades, and get job-schedule updates from wherever they were

working. That, in turn, would let technicians complete more calls a day.

Also, when customers cancel or reschedule service calls—something that hap-

pens up to 100 times a day in some districts—technicians and dispatchers could

learn about the changes and make schedule adjustments almost immediately. In the

past, they’d be paged, have to find a pay phone, then wait for instructions.“Here was

an opportunity to computerize everything, eliminate paper service orders, and have

the ability to communicate almost instantaneously with the technicians,” said Vince

Accardi, director of process management.

The project sounded good enough to go, but presenting a formal ROI analysis

was “absolutely essential” to the approval process, Honan said. Added Joseph

Smialowski, Sears’s senior VP and CIO and a key player in the approval of all types

of investments at the retailer, “All our projects—whether it’s opening new stores or

buying new systems—have to compete for the capital that’s available. There are

really no projects that can slip through without going through a quantitative analysis.”

To justify the handheld PC initiative, Home Services managers used a cost–benefit

measure to determine net annual savings. To illustrate the longer-term benefits of

the investment, they also calculated the net present value (NPV) of cash flows over

a five-year period.

Home Services presented the expected benefits in terms of expected annual

savings for Sears. The project proposal then went through a multilevel evaluation

process: first within Home Services, and next at the company’s strategic planning

level.The plan was evaluated for technical soundness, accuracy of the cost estimates,

and to see if it fit Sears’s business model and enterprise architecture. The proposal

then went to Sears’s finance committee, which includes the company’s CEO, the

chief financial officer (CFO), the CIO, and two business presidents. They approved

the project. It was then rolled out, first in test markets, then district by district.

Source: B. Violino, “Sears, Roebuck, & Co. Productivity Gains from Mobile Computing,” informationweek.
com/679/79iuro6.htm (1998).

Organizational Feasibility. Organizational feasibility has to do with an organiza-

tion’s ability to accept the proposed project. Sometimes, for example, organizations

cannot accept a financially acceptable project due to legal or other constraints. In

checking organizational feasibility, one should consider the organization’s policies

T6.6 Technology Guide A Technical View of System Analysis and Design

and politics, including impacts on power distribution, business relationships, and

internal resources availability.

Behavioral Feasibility. Behavioral feasibility addresses the human issues of the

project. All systems development projects introduce change into the organization,

and people generally fear change. Overt resistance from employees may take the

form of sabotaging the new system (e.g., entering data incorrectly) or deriding the

new system to anyone who will listen. Covert resistance typically occurs when

employees simply do their jobs using their old methods.

A more positive and pragmatic concern of behavioral feasibility is assessing the

skills and training needs that often accompany a new information system. In some

organizations, a proposed system may require mathematical or linguistic skills

beyond what the workforce currently possesses. In others, a workforce may simply

need additional skill building rather than remedial education. Behavioral feasibility

is as much about “can they use it” as it is about “will they use it.”

After the feasibility analysis, a “Go/No-Go” decision is reached. The functional

area manager for whom the system is to be developed and the project manager sign

off on the decision. If the decision is “No-Go,” the project is put on the shelf until con-

ditions are more favorable, or the project is discarded. If the decision is “Go,” then the

systems development project proceeds and the systems analysis phase begins.

T6.2 Overview of the Traditional Systems Development Life Cycle T6.7

SYSTEMS ANALYSIS
(STEP 2)

Once a development project has the necessary approvals from all participants, the

systems analysis stage begins. Systems analysis is the examination of the business

problem that the organization plans to solve with an information system. This stage

defines the business problem, identifies its causes, specifies the solution, and identi-

fies the information requirements that the solution must satisfy. Understanding the

business problem requires understanding the various processes involved. These can

often be quite complicated and interdependent. (Note that this stage is similar to

Step 1 described in Section T6.1.The difference is that the steps in that section could

apply to any type of system acquisition; here, the process refers specifically to build-

ing applications.)

Organizations have three basic solutions to any business problem relating to an

information system: (1) Do nothing and continue to use the existing system

unchanged. (2) Modify or enhance the existing system. (3) Develop a new system.

The main purpose of the systems analysis stage is to gather information about the

existing system, in order to determine which of the three basic solutions to pursue

and to determine the requirements for an enhanced or new system. The end prod-

uct (the “deliverable”) of this stage is a set of information requirements.

Arguably the most difficult task in systems analysis is to identify the specific infor-

mation requirements that the system must satisfy. Information requirements outline

what information, how much information, for whom, when, and in what format. Sys-

tems analysts use many different techniques to obtain the information requirements

for the new system. These techniques include structured and unstructured interviews

with users and direct observation. Structured interviews pose questions written in

advance. In unstructured interviews, the analyst does not have predefined questions

but uses experience to elicit the problems of the existing system from the user. With

direct observation, analysts observe users interacting with the existing system.

In developing information requirements, analysts must be careful not to let any

preconceived ideas they have interfere with their objectivity. Further, analysts must

be unobtrusive, so that users will interact with the system as they normally would.

There are problems associated with eliciting information requirements, regard-

less of the method used by the analyst. First, the business problem may be poorly

defined. Second, the users may not know exactly what the problem is, what they

want, or what they need. Third, users may disagree with each other about business

procedures or even about the business problem. Finally, the problem may not be

information related, but may require other solutions, such as a change in manage-

ment or additional training.

The systems analysis stage produces the following information: (1) Strengths

and weaknesses of the existing system. (2) Functions that the new system must have

to solve the business problem. (3) User information requirements for the new sys-

tem. Armed with this information, systems developers can proceed to the systems

design stage.

There are two main approaches in systems analysis: the traditional (structured)

approach, and the object-oriented approach. The traditional approach emphasizes

“how,” whereas the object-oriented approach emphasizes “what.”

T6.8 Technology Guide A Technical View of System Analysis and Design

SYSTEMS DESIGN
(STEP 3)

Systems analysis describes what a system must do to solve the business problem,

and systems design describes how the system will accomplish this task. The deliver-

able of the systems design phase is the technical design that specifies the following:

• System outputs, inputs, and user interfaces

• Hardware, software, databases, telecommunications, personnel, and procedures

• How these components are integrated

This output represents the set of system specifications.

Systems design encompasses two major aspects of the new system: Logical
system design states what the system will do, using abstract specifications. Physical
system design states how the system will perform its functions, with actual physical

specifications. Logical design specifications include the design of outputs, inputs,

processing, databases, telecommunications, controls, security, and IS jobs. Physical

design specifications include the design of hardware, software, database, telecom-

munications, and procedures. For example, the logical telecommunications design

may call for a wide-area network connecting the company’s plants. The physical

telecommunications design will specify the types of communications hardware (e.g.,

computers and routers), software (e.g., the network operating system), media

(e.g., fiber optics and satellite), and bandwidth (e.g., 100 Mbps).

When both these aspects of system specifications are approved by all partici-

pants, they are “frozen.” That is, once the specifications are agreed upon, they should

not be changed. However, users typically ask for added functionality in the system

(called scope creep). This occurs for several reasons: First, as users more clearly

understand how the system will work and what their information and processing

needs are, they see additional functions that they would like the system to have.Also,

as time passes after the design specifications are frozen, business conditions often

change, and users ask for added functionality. Because scope creep is expensive, proj-

ect managers place controls on changes requested by users. These controls help to

prevent runaway projects—systems development projects that are so far over budget

and past deadline that they must be abandoned, typically with large monetary loss.

PROGRAMMING
(STEP 4)

Systems developers utilize the design specifications to acquire the software needed

for the system to meet its functional objectives and solve the business problem. As

discussed in Chapter 14, organizations may buy the software or construct it in-house.

Although many organizations tend to purchase packaged software, many

other firms continue to develop custom software in-house. For example, Wal-

Mart and Eli Lilly build practically all their software in-house. The chief benefit

of custom development is systems that are better suited than packaged applica-

tions to an organization’s new and existing business processes. For many organi-

zations, custom software is more expensive than packaged applications. However,

if a package does not closely fit the company’s needs, the savings are often

diluted when the information systems staff or consultants must extend the func-

tionality of the purchased packages.

If the organization decides to construct the software in-house, then program-

ming begins. Programming involves the translation of the design specifications into

computer code. This process can be lengthy and time-consuming because writing

computer code remains as much an art as a science. Large systems development

projects can require hundreds of thousands of lines of computer code and hundreds

of computer programmers. In such projects, programming teams are used. These

teams often include functional area users to help the programmers focus on the

business problem at hand.

In an attempt to add rigor (and some uniformity) to the programming process,

programmers use structured programming techniques. These techniques improve

the logical flow of the program by decomposing the computer code into modules,
which are sections of code (subsets of the entire program). This modular structure

allows for more efficient and effective testing because each module can be tested by

itself. The structured programming techniques include the following restrictions:

• Each module has one, and only one, function.

• Each module has only one entrance and one exit. That is, the logic in the com-

puter program enters a module in only one place and exits in only one place.

• GO TO statements are not allowed.

For example, a flowchart for a simple payroll application might look like the one

shown in Figure T6.3 (page T6. 10). The figure shows the only three types of struc-

tures that are used in structured programming: sequence, decision, and loop. In the

sequence structure, program statements are executed one after another until all

the statements in the sequence have been executed. The decision structure allows

the logic flow to branch, depending on certain conditions being met. The loop
structure enables the software to execute the same program, or parts of a pro-

gram, until certain conditions are met (e.g., until the end of the file is reached, or

until all records have been processed).

As already noted, structured programming enforces some standards about how

program code is written. This approach and some others were developed not only

to improve programming, but also to standardize how a firm’s various programmers

do their work. This uniform approach helps ensure that all the code developed by

different programmers will work together. Even with these advances, however, pro-

gramming can be difficult to manage. An example of how one company managed to

track programming progress is provided next.

E X A M P L E : Belk Inc. Tracks Development Progress, Reaps
Rewards With limited management resources available and the pressure to

deploy new business solutions quickly, measuring productivity in systems develop-

ment often becomes a low priority for many organizations. IT departments at

smaller companies in particular seem reluctant to institute policies to track the per-

formance of development projects. Some companies, however, have been forced to

adopt productivity measurement methods, and are reaping rewards for doing so.

T6.2 Overview of the Traditional Systems Development Life Cycle T6.9

For example, national retailer Belk Inc. had to adopt productivity metrics as

a means of reducing devastating system failures. Conda Lashley, the veteran IT

consultant that Belk hired, was used to nursing client organizations through

crashes that periodically downed their systems. But nothing had prepared Lash-

ley for the failure rate at Belk. Soon after joining the company as senior VP for

systems development, Lashley discovered that Belk’s batch systems went down

an astounding 800 times a month. The Charlotte, North Carolina, outfit, a private

company with estimated annual revenue of $1.7 billion, paid a heavy price for the

constant bandaging: In 1997, Belk spent $1.1 million of its $30 million IT budget

on unplanned maintenance.

To steady the systems, Lashley instituted a series of tracking measures. Pro-

grammers began logging their time. Required software functions were carefully

counted in application development projects. Belk compared its cycle time, defect

rates, and productivity with competitors’ figures. And systems managers were

required to draw up blueprints for reducing the crashes—with the results reviewed

in their performance evaluations.

The transition to tracking the IT department’s performance was painful but

worthwhile. Belk’s systems became more stable—monthly disruptions dropped to

480 incidents, a figure Lashley hoped to slash by another 30 percent. Unplanned

maintenance costs also have been brought under control, with initial cuts in

unplanned maintenance expenses of $800,000.

T6.10 Technology Guide A Technical View of System Analysis and Design

Gross pay =
hours x hr. rate

Gross pay =
salary/52

Last
record?

Hours
worked > 40?

Employee
hourly?

No

No

No

Yes

Yes

Yes

Stop

Gross pay = (40 x hr. rate) +
(# hours – 40) x (hr. rate x 1.5)

Read employee record.

Figure T6.3 Flowchart
diagram of a payroll
application of structured
programming.

T6.2 Overview of the Traditional Systems Development Life Cycle T6.11

TESTING (STEP 5)
Thorough and continuous testing occurs throughout the programming stage. Testing

checks to see if the computer code will produce the expected and desired results

under certain conditions.Testing requires a large amount of time, effort, and expense

to do properly. However, the costs of improper testing, which could possibly lead to

a system that does not meet its objectives, are enormous.

Testing is designed to detect errors (“bugs”) in the computer code. These errors

are of two types: syntax errors and logic errors. Syntax errors (e.g., a misspelled word

or a misplaced comma) are easier to find and will not permit the program to run.

Logic errors permit the program to run but result in incorrect output. Logic errors are

more difficult to detect because the cause is not obvious. The programmer must fol-

low the flow of logic in the program to determine the source of the error in the output.

To have a systematic testing of the system, we must start with a comprehensive

test plan. There are several types of testing: In unit testing, each module is tested

alone in an attempt to discover any errors in its code. String testing puts together

several modules, to check the logical connection among them. The next level, integ-
ration testing, brings together various programs for testing purposes. System testing
brings together all of the programs that comprise the system.

As software increases in complexity, the number of errors increases, making it

almost impossible to find them all. This situation has led to the idea of “good-
enough” software, software that developers release knowing that errors remain in

the code but believing that the software will still meet its functional objectives. That

is, they have found all the “show-stopper” bugs, errors that will cause the system to

shut down or will cause catastrophic loss of data.

IMPLEMENTATION
(STEP 6)

Implementation (or deployment) is the process of converting from the old system

to the new system. Organizations use four major conversion strategies: parallel,

direct, pilot, and phased.

In a parallel conversion, the old system and the new system operate simultane-

ously for a period of time.That is, both systems process the same data at the same time,

and the outputs are compared. This type of conversion is the most expensive, but also

the least risky. Most large systems have a parallel conversion process to lessen the risk.

In a direct conversion, the old system is cut off and the new system is turned on

at a certain point in time.This type of conversion is the least expensive, but the most

risky if the new system doesn’t work as planned. Few systems are implemented

using this type of conversion, due to the risk involved.

A pilot conversion introduces the new system in one part of the organization,

such as in one plant or in one functional area. The new system runs for a period of

time and is assessed. After the new system works properly, it is introduced in other

parts of the organization.

A phased conversion introduces components of the new system, such as individ-

ual modules, in stages. Each module is assessed, and, when it works properly, other

modules are introduced until the entire new system is operational.

Enterprise application integration (EAI) is often called the middleware. Inter-

faces were developed to map the major packages to a single conceptual framework

that guides what all these packages do and the kinds of information they normally

need to share. This conceptual framework could be used to translate the data and

processes from each vendor’s package to a common language. It is the only way to

implement collaborative supply chain sharing of information.

XML is the technology that is being used by many EAI vendors in their cross-

enterprise applications development. It can be thought of as a way for providing

variable format messages that can be shared between any two computer systems, as

long as they both understand the format (tags) that is (are) being used.

T6.12 Technology Guide A Technical View of System Analysis and Design

OPERATION AND
MAINTENANCE
(STEPS 7 AND 8)

After conversion, the new system will operate for a period of time, until (like the old

system it replaced) it no longer meets its objectives. Once the new system’s opera-

tions are stabilized, audits are performed during operation to assess the system’s

capabilities and determine if it is being used correctly.

Systems need several types of maintenance. The first type is debugging the pro-

gram, a process that continues throughout the life of the system. The second type is

updating the system to accommodate changes in business conditions. An example

would be adjusting to new governmental regulations (such as tax rate changes).

These corrections and upgrades usually do not add any new functionality; they are

necessary simply in order for the system to continue meeting its objectives.The third

type of maintenance adds new functionality to the system—adding new features to

the existing system without disturbing its operation.

Organizations use the traditional systems development life cycle because it has

three major advantages: control, accountability, and error detection. An important

issue in systems development is that the later in the development process that errors

are detected, the more expensive they are to correct. The structured sequence of

tasks and milestones in the SDLC thus makes error detection easier and saves

money in the long run.

However, the SDLC does have disadvantages. By its structured nature, it is rel-

atively inflexible. It is also time-consuming, expensive, and discourages changes to

user requirements once they have been established. Development managers who

must develop large, enterprisewide applications therefore find it useful to mix and

match development methods and tools in order to reduce development time, com-

plexity, and costs. These methods and tools include prototyping, rapid application

development, component-based development, Web Services, integrated computer-

assisted software engineering (ICASE) tools, and object-oriented development.

Although all these methods and tools can reduce development time, none can con-

sistently deliver in all cases. They are perhaps best considered as options to comple-

ment or replace the SDLC or portions of it. This section discusses each of these

methods and tools.

T6.3 Alternative Methods and Tools for Systems Development

PROTOTYPING
The prototyping approach defines an initial list of user requirements, builds a pro-

totype system, and then improves the system in several iterations based on users’

feedback. Developers do not try to obtain a complete set of user specifications for

the system at the outset and do not plan to develop the system all at once. Instead,

they quickly develop a prototype, which either contains parts of the new system of

most interest to the users or is a small-scale working model of the entire system.

Users make suggestions for improving the prototype, based on their experiences

with it.

The developers then review the prototype with the users and use the sugges-

tions to refine the prototype. This process continues through several iterations until

either the users approve the system or it becomes apparent that the system cannot

meet users’ needs. If the system is viable, the developers can use the prototype on

which to build the full system. Developing screens that a user will see and interact

with is a typical use of prototyping. (See Figure T6.4 for a model that shows the pro-

totyping process.)

The main advantage of prototyping is that it speeds up the development process.

In addition, prototyping gives users the opportunity to clarify their information

requirements as they review iterations of the new system. Prototyping is especially

useful in the development of decision support systems and executive information

systems, where user interaction is particularly important.

Prototyping also has disadvantages. Because it can largely replace the analysis

and design stages of the SDLC in some projects, systems analysts may not produce

adequate documentation for the programmers. This lack of documentation can lead

to problems after the system becomes operational and needs maintenance. In addi-

tion, prototyping can result in an excess of iterations, which can consume the time

that prototyping should be saving.

Inside spiral development there is prototyping. The prototype is a model of a

system that can be used to communicate the requirements and design of that part

of the system between developers and their clients.

T6.3 Alternative Methods and Tools for Systems Development T6.13

JOINT APPLICATION
DESIGN

Joint application design (JAD) is a group-based tool for collecting user require-

ments and creating system designs. JAD is most often used within the systems analy-

sis and systems design stages of the SDLC.

In the traditional SDLC, systems analysts interview or directly observe poten-

tial users of the new information system individually to understand each user’s

needs. The analysts will obtain many similar requests from users, but also many con-

flicting requests. The analysts must then consolidate all requests and go back to the

users to resolve the conflicts, a process that usually requires a great deal of time. In

contrast, JAD has a group meeting in which all users meet simultaneously with ana-

lysts. It is basically a group decision-making process (Chapter 11) and can be com-

puterized or done manually. During this meeting, all users jointly define and agree

Determine conceptual information model and
detail requirements.

Develop initial relational database using data
modeling and procedures.

Develop operational prototype, data structure,
formal reports, and ad hoc reporting.

Revise prototype as needed by:
• adding entities
• changing data structures
• adding data items
• updating data dictionary
• adding software tools
• enhancing input and output capabilities

Demonstrate prototype to users and have
them use it on real problems.

Continue with SDLC.

Is
prototype

satisfactory?

No

Yes

Figure T6.4 A model of
the prototyping process.

upon systems requirements.This process saves a tremendous amount of time. e-JAD

is an extension of JAD whereby the group meeting is done remotely using group-

ware software.

The JAD approach to systems development has several advantages. First, the

group process involves many users in the development process while still saving

time. This involvement leads to greater support for the new system and can produce

a system of higher quality. This involvement also may lead to easier implementation

of the new system and lower training costs.

The JAD approach also has disadvantages. First, it is very difficult to get all users

to the JAD meeting. For example, large organizations may have users literally all

over the world. Second, the JAD approach has all the problems caused by any group

process (e.g., one person can dominate the meeting, some participants may not con-

tribute in a group setting). To alleviate these problems, JAD sessions usually have a

facilitator, who is skilled in systems analysis and design as well as in managing group

meetings and processes. Also, the use of groupware (such as GDSS) can help facili-

tate the meeting.

T6.14 Technology Guide A Technical View of System Analysis and Design

RAPID APPLICATION
DEVELOPMENT

Rapid application development (RAD) is a systems development method that can

combine JAD, prototyping, and integrated CASE tools (described next) to rapidly

produce a high-quality system. Initially, JAD sessions are used to collect system

requirements, so that users are intensively involved early on. The development

process in RAD is iterative, similar to prototyping, in which requirements, designs,

and the system itself are developed with sequential refinements. However, RAD

and prototyping use different tools. Prototyping typically uses specialized languages,

such as fourth-generation languages (4GLs), Web-based development tools, and

screen generators; RAD uses ICASE tools (discussed next) to quickly structure

requirements and develop prototypes.As the prototypes are developed and refined,

users review them in additional JAD sessions. RAD produces functional compo-

nents of a final system, rather than limited-scale versions. For more details, see

Figure T6.5. The figure also compares RAD to SDLC.

Rapid application development (RAD) methodologies and tools make it possi-

ble to develop systems faster, especially systems where the user interface is an

important component. RAD can also improve the process of rewriting legacy appli-

cations. An example of how quickly experienced developers can create applications

with RAD tools is provided next.

Planning Analysis Design

Development
Requirements

Iterative

Development

JAD

Design

Develop

Test
User Review

Build

Traditional Development

RAD

Compress

Test Deploy

Figure T6.5 A rapid pro-
totyping development
process versus SDLC.
(Source: creativedata.
com/research/rad.html.)

E X A M P L E : Blue Cross & Blue Shield Develops an Award-
Winning Application Using RAD A Y2K problem without a solution led to

the development of an innovative customer-service application in less than a year at

Blue Cross & Blue Shield of Rhode Island (BCBSRI). The new system is based on

an internally developed architecture that the Application Development Trends’

2000 Innovator Awards judges lauded as modular and flexible enough to easily

allow for system upgrades and the incorporation of new technology.

BCBSRI decided in mid-1998 to build a new customer-service system, a mission-

critical application that monitors and records communications with policyholders.

The internal work on the project began in January 1999 after the development plan

and blueprint were validated by outside consultants.

The development team adhered to a phased-rollout approach and rapid appli-

cation development (RAD) methodology. Developers used several productivity

tools (including the Sybase EAServer, Sybase PowerBuilder, and Riverton HOW),

as well as performance monitoring techniques and heavy user involvement to

ensure the quality of the system throughout its life cycle. By September 1, 1999, the

application was available to more than a hundred Windows 98-based clients. Since

then, the customer-service unit has averaged about 1800 daily calls and more than

20,000 transactions a day over the system.

By early 2000, the new customer-service system had already saved the company

$500,000 and produced boosts in user productivity, significant strides in system per-

formance, and increased data accuracy.The integration, power, and scalability of the

BCBSRI solution are truly exemplary.

Sources: Condensed from M.W. Bucken,“2000 Innovator Awards: Blue Cross & Blue Shield,” Application
Development Trends Magazine, April 2000, and from paper published at adtmag.com (April 2000).

T6.3 Alternative Methods and Tools for Systems Development T6.15

EXTREME
PROGRAMMING

Extreme programming (XP) is an attempt to combat the chaotic tendencies of RAD

while still maintaining the flexibility to respond to changing business needs. It advo-

cates rigorous and automated testing and simplicity of code. The team should never

make assumptions about future requirements and should constantly reevaluate old

code in light of new requirements. Its goal is to release software as often as possible

in order to test it with real users. Extreme programming creates a “one feature at a

time” mentality that slowly grows the software and reduces risk by ensuring that a

project will have a sufficient degree of stable functionality at any given time.

Agile software development is a conceptual framework for undertaking soft-

ware projects. There are many agile software development methods. Most of them

attempt to minimize risk by developing software in short timeboxes, called itera-

tions, which typically last one to four weeks. Each iteration is like a miniature soft-

ware project of its own, and includes all of the tasks necessary to release the mini-

increment of new functionality: planning, requirements analysis, design, coding,

testing, and documentation. While an iteration may not add enough functionality to

warrant releasing the product, an agile software project intends to be capable of

releasing new software at the end of every iteration. At the end of each iteration,

the team reevaluates project priorities.

Agile methods emphasize real-time communication, preferably face-to-face,

over written documents. Most agile teams are located in a bullpen and include all

the people necessary to finish software.Agile methods also emphasize working soft-

ware as the primary measure of progress. Combined with the preference for face-to-

face communication, agile methods produce very little written documentation rela-

tive to other methods.

T6.16 Technology Guide A Technical View of System Analysis and Design

INTEGRATED
COMPUTER-
ASSISTED
SOFTWARE
ENGINEERING
TOOLS

Computer-aided software engineering (CASE) is a development approach that uses

specialized tools to automate many of the tasks in the SDLC.The tools used to auto-

mate the early stages of the SDLC (systems investigation, analysis, and design) are

called upper CASE tools.The tools used to automate later stages in the SDLC (pro-

gramming, testing, operation, and maintenance) are called lower CASE tools.

CASE tools that provide links between upper CASE and lower CASE tools are

called integrated CASE (ICASE) tools. Some CASE tools can even work back-

ward, modifying the model after modifying the coding. See, for example, IBM’s

Rational Rose.

CASE tools provide advantages for systems developers. These tools can pro-

duce systems with a longer effective operational life that more closely meet user

requirements. CASE tools can speed up the development process and result in sys-

tems that are more flexible and adaptable to changing business conditions. Finally,

systems produced using CASE tools typically have excellent documentation.

On the other hand, CASE tools can produce initial systems that are more

expensive to build and maintain. CASE tools do require more extensive and accu-

rate definition of user needs and requirements.Also, CASE tools are difficult to cus-

tomize and may be difficult to use with existing systems.

OBJECT-ORIENTED
DEVELOPMENT

Object-oriented development is based on a fundamentally different view of com-

puter systems than that found in traditional SDLC development approaches. Tradi-

tional approaches provide specific step-by-step instructions in the form of computer

programs, in which programmers must specify every procedural detail. These pro-

grams usually result in a system that performs the original task but may not be

suited for handling other tasks, even when the other tasks involve the same real-

world entities. For example, a billing system will handle billing but probably will not

be adaptable to handle mailings for the marketing department or generate leads for

the sales force, even though the billing, marketing, and sales functions all use simi-

lar data (e.g., customer names, addresses, and purchases). An object-oriented (OO)

system, on the other hand, begins not with the task to be performed, but with the

aspects of the real world that must be modeled to perform that task. Therefore, in

the example above, if the firm has a good model of its customers and its interactions

with them, this model can be used equally well for billings, mailings, and sales leads.

The object-oriented (OO) approach to software development offers many

advantages:

• It reduces the complexity of systems development and leads to systems that are

easier and quicker to build and maintain, because each object is relatively small

and self-contained.

• It improves programmers’ productivity and quality. Once an object has been

defined, implemented, and tested, it can be reused in other systems.

• Systems developed with the OO approach are more flexible. These systems can

be modified and enhanced easily by changing some types of objects or by adding

new types.

• The OO approach allows the systems analyst to think at the level of the real-

world systems (as users do), rather than at the level of the programming language.

The basic operations of an enterprise change much more slowly than the informa-

tion needs of specific groups or individuals. Therefore, software based on generic

models (which the OO approach is) will have a longer life span than programs

written to solve specific, immediate problems.

• The OO approach is also ideal for developing Web applications.

• The OO approach depicts the various elements of an information system in user

terms (i.e., business or real-world terms), and therefore, the users have a better

understanding of what the new system does and how it meets its objectives.

The OO approach does have some disadvantages: OO systems, especially those

written in Java, generally run more slowly than those developed in other program-

ming languages. Also, many programmers have little skill and experience with OO

languages, necessitating retraining.

An object-oriented development environment provides a framework that

encourages designers to think in object-oriented terms, to design systems with concep-

tual integrity and clear separation of function from internal implementation. It also

provides substantial assistance to the developer in automating the production of exe-

cutable software from the object-oriented model. Interface logic, and the underlying

middleware, are generated by the component-based development environment.

It is hard to “mine” design patterns from earlier work, and once such patterns

have been mined, it is hard to catalog and reuse them. Reuse is hard because the

pattern-reuse technique is an emerging and little-known discipline with precious

few tools to support it.Although some developers are successfully using the pattern-

reuse technique (Best, 1995, and Schmidt 1999), there is much untapped potential

here that could be realized with greater awareness, better tools, and available repos-

itories of reusable patterns.

Object-Oriented Analysis and Design. The development process for an object-

oriented system begins with a feasibility study and analysis of the existing system.

Systems developers identify the objects in the new system—the fundamental ele-

ments in OO analysis and design. Each object represents a tangible real-world

entity, such as a customer, bank account, student, or course. Objects have properties.

For example, a customer has an identification number, name, address, account num-

ber(s), and so on. Objects also contain the operations that can be performed on their

properties. For example, customer objects’ operations may include obtain-account-

balance, open-account, withdraw-funds, and so on.

Therefore, object-oriented analysts define all the relevant objects needed for

the new system, including their properties (called data values) and their operations

(called behaviors). They then model how the objects interact to meet the objectives

of the new system. In some cases, analysts can reuse existing objects from other

applications (or from a library of objects) in the new system, saving time spent cod-

ing. In most cases, however, even with object reuse, some coding will be necessary

to customize the objects and their interactions for the new system.

Comparison of the various development methods, including those covered in

Chapter 15, is shown in Table T6.1.

Service-Oriented Analysis and Design. As service-oriented architecture and the

service-oriented computing platform mature, more formal approaches and method-

ologies to building service-oriented solution logic have emerged.These build on ear-

lier analysis and design processes (including object-oriented analysis and design and

business process modeling) and share in the common goal of promoting an effective

means of achieving a separation of concerns.

Service-Oriented Analysis. This process generally refers to a predesign effort cen-

tered around the definition of conceptual services or a conceptual service-oriented

architecture. Much like object-oriented analysis, the goal is often to achieve an ideal

representation. IBM provides a variation of service-oriented analysis as part of its

service-oriented analysis and design (SOAD) framework.

T6.3 Alternative Methods and Tools for Systems Development T6.17

T6.18 Technology Guide A Technical View of System Analysis and Design

TABLE T6.1 Advantages and Disadvantages of Systems Acquisition Methodologies

Advantages Disadvantages

Traditional Systems Development (SDLC)
• Forces staff to be systematic by going through

every step in a structured process.

• Enforces quality by maintaining standards.

• Has lower probability of missing important

issues in collecting user requirements.

Prototyping
• Helps clarify user requirements.

• Helps verify the feasibility of the design.

• Promotes genuine user participation in the

development process.

• Promotes close working relationship between

systems developers and users.

• Works well for ill-defined problems.

• May produce part of the final system.

Joint Application Development (JAD)
• Easy for senior management to understand.

• Provides needed structure to the user require-

ments collection process.

Rapid Application Development (RAD)
• Active user involvement in analysis and design

stages.

• Easier implementation due to user involvement.

Object-Oriented Development (OO)
• Integration of data and processing during analysis

and design should lead to higher-quality systems.

• Reuse of common objects and classes makes

development and maintenance easier.

End-User Development
• Bypasses the information systems department

and avoids delays.

• User controls the application and can change it

as needed.

• Directly meets user requirements.

• Increased user acceptance of new system.

• Frees up IT resources and may reduce applica-

tion development backlog.

External Acquisition (Buy or Lease)
• Software exists and can be tried out.

• Software has been used for similar problems in

other organizations.

• Reduces time spent for analysis, design, and

programming.

• Has good documentation that will be maintained.

• May produce excessive documentation.

• Users are often unwilling or unable to study the specifica-

tions they approve.

• Takes too long to go from the original ideas to a working system.

• Users have trouble describing requirements for a proposed

system.

• May encourage inadequate problem analysis.

• Not practical with large number of users.

• User may not give up the prototype when the system is

completed.

• May generate confusion about whether or not the informa-

tion system is complete and maintainable.

• System may be built quickly, which may result in lower quality.

• Difficult and expensive to get all people to the same place

at the same time.

• Potential to have dysfunctional groups.

• System often narrowly focused, which limits future evolution,

flexibility, and adaptability to changing business conditions.

• System may be built quickly, which may result in lower quality.

• Very difficult to train analysts and programmers on the OO

approach.

• Limited use of common objects and classes.

• Creates lower-quality systems because an amateur does the

programming.

• May eventually require consulting and maintenance assis-

tance from the IT department.

• System may not have adequate documentation.

• Poor quaility control.

• System may not have adequate interfaces to existing systems.

• Controlled by another company that has its own priorities

and business considerations.

• Package’s limitations may prevent desired business processes.

• May be difficult to get needed enhancements if other com-

panies using the package do not need those enhancements.

• Lack of intimate knowledge about how the software works

and why it works that way.

T6.3 Alternative Methods and Tools for Systems Development T6.19

Service-Oriented Design. Generally following the completion of a service-

oriented analysis, a service-oriented design process will continue by using the results

of the service-oriented analysis as a starting point. This process usually subjects the

conceptual services to real-world factors and conditions, ultimately resulting in con-

crete service designs. IBM provides a variation of service-oriented design as part of

its SOAD framework.

INFORMATION
SYSTEMS
DEVELOPMENT
METHODOLOGIES,
TECHNIQUES,
AND TOOLS

An information systems development methodology (ISDM) can be defined as a col-

lection of procedures, techniques, tools, and documentation aids that help systems

developers in their efforts to implement a new information system. The methodol-

ogy consists of phases, themselves consisting of subphases, which guide the systems

developers in their choice of the techniques that might be appropriate at each stage

of the project, and also help them plan, manage, control, and evaluate information

systems projects.

A methodology is a set of practices and procedures, with supporting templates

and knowledge bases, that systematically organizes the development process. (A

methodology is different from method.) A methodology should specify the training

needs of the users and specifically address the critical issue of development philos-

ophy. The objectives of using a methodology are: (1) a better end product, (2) a bet-

ter development process, and (3) a standardized process.

Different methodologies make different assumptions about the business and

work environments of the project, and knowing each of their pros and cons allows

a team to pick the most efficient methodology for its particular project. Some

methodologies emphasize testing, some documentation; others stress code reusabil-

ity. Certain methodologies are better suited for projects with tight deadlines or

unclear and changing requirements.

Executing against a methodology reduces the knowledge and experience

required by a development team. However, the team needs to learn the rules and

practices of a specific methodology.

Methodologies can be classified into process-oriented, blended, object-oriented,

rapid development, people-oriented, organizational-oriented, and frameworks. Exam-

ples of each are shown in Table T6.2.

Techniques and Tools Features in Each Methodology. A technique is a way of

doing a particular activity in the information systems development process, and any

particular methodology may recommend techniques to carry out many of these

activities. Techniques include holistic, data, process, object-oriented, project man-

agement, organizational, and people.

Each technique may involve the use of one or more tools that represent some of

the artifacts used in information systems development.Tools include groupware (e.g.,

GroupSystems),Web site development (e.g., DreamWeaver), drawing (e.g., Microsoft

Visio), project management (e.g., Microsoft Project), and database management (e.g.,

Microsoft Access).Tools used in development can be ranged from simple automation

(e.g., a drawing program like Visio) to fully featured modeling tools like Rational

Rose, which is capable of interfacing to a repository through XML to share data with

other tools in a cooperative total development environment.

Several other system development methods exist, especially for e-business and

Web-based applications. Most notable are component-based development and Web

Services, the topics of our next section.

Information Technology Infrastructure Library (ITIL) is a framework of best

practice approaches intended to facilitate the delivery of high-quality information

technology (IT) services. ITIL outlines an extensive set of management procedures

that are intended to support businesses in achieving both quality and value for

money in IT operations. These procedures are supplier independent and have been

developed to provide guidance across the breadth of IT infrastructure, develop-

ment, and operations. Its BIP 0056: ITIL—Application Management set encom-

passes a set of best practices proposed to improve the overall quality of IT software

development and support through the life cycle of software development projects,

with particular attention to gathering and defining requirements that meet business

objectives.

T6.20 Technology Guide A Technical View of System Analysis and Design

TABLE T6.2 Examples of Development Methodologies

Classification Examples

Process-oriented Structured Analysis, Design, and Implementation of Informa-

tion Systems (STRADIS), Yourdon Systems Method

(YSM), and Jackson Systems Development (JSD)

Blended Structured Systems Analysis and Design Method (SSADM),

Merise, Information Engineering IE, and Welti ERP

Development

Object-oriented Object-Oriented Analysis (OOA), and Rational Unified

Process (RUP)

Rapid development James Martin’s RAD, Dynamic Systems Development

Method (DSDM), Extreme Programming (XP), and Web

IS Development Methodology (WISDM)

People-oriented Effective Technical and Human Implementation of Computer-

Based Systems (ETHICS), KADS, and CommonKADS

Organizational-oriented Soft Systems Methodology (SSM_, Information Systems Work

and Analysis of Changes (ISAC), Process Innovation (PI),

Projects In Controlled Environments (PRINCE), and

Renaissance

Frameworks MultiView, Strategic Options Development and Analysis

(SODA), Capability Maturity Model (CMM), and Euro-

Method

T6.4 Component-Based Development and Web Services

COMPONENT-BASED
DEVELOPMENT

Object-oriented development, discussed in Section T6.3, has its downside: Business

objects, though they represent things in the real world, can become unwieldy when

they are combined and recombined in large-scale commercial applications. What is

needed, instead, are suites of business objects that provide major chunks of appli-

cation functionality (e.g., preprogrammed workflow, order placing) that can be

“snapped together” to create complete business applications.

This approach is embodied in component-based development (CBD), the

upcoming evolutionary step beyond object-oriented development. CBD uses pre-

programmed components to develop applications. According to Szyperski (1998), a

component is a unit of composition with contractually specified interfaces and

explicit context dependencies. Context dependencies are specified by starting the

required interfaces and the acceptable platforms. For the purposes of independent

deployment, a component needs to be a binary unit.

A component’s functionality can be accessed only through its interfaces. Com-

ponents must have software “plug points” that fit into sockets provided by a com-

ponent execution environment. The component execution environment is required

to provide run-time technical infrastructure services and to hide low-level technol-

ogy issues from the business solution developer.

Rather than synchronous interactions between components, a component

invokes an operation in another component by sending a message. Where integra-

tion is needed across architectural domains, loosely coupled integration is more

appropriate than a tightly coupled arrangement. In a tightly coupled integration, a

component needs to know the name of the service it wants to call. In a loosely cou-
pled integration with a message broker, an application makes its request by sending

a message, in proper standard format, to the message broker. Based on the message

content, the message broker forwards the message to the application that accepts

the message and acts upon it.

Key Characteristics of Components in Component-Based Development. Comp-

onents used in distributed computing need to possess several key characteristics to

work correctly, and they can be viewed as an extension of the object-oriented para-

digm.The two main traits borrowed from the world of object-oriented technology are

encapsulation and data hiding.
Components encapsulate the routines or programs that perform discrete

functions. In a component-based program, one can define components with vari-

ous published interfaces. One of these interfaces might be, for example, a data-

comparison function. If this function is passed to two data objects to compare, it

returns the results. All manipulations of data are required to use the interfaces

defined by the data object, so the complete function is encapsulated in this

object, which has a distinct interface to other systems. Now, if the function has to

be changed, only the program code that defines the object must be changed, and

the behavior of the data comparison routine is updated immediately, a feature

known as encapsulation.
Data hiding addresses a different problem. It places data needed by a compo-

nent object’s functions within the component, where it can be accessed only by spe-

cially designated functions in the component itself. Data hiding is a critical trait of

distributed components. The fact that only designated functions can access certain

data items, and outside “requestors” have to query the component, simplifies main-

tenance of component-oriented programs.

Examples of components include user interface icons (small), word processing

(a complete software product), a GUI, online ordering (a business component), and

inventory reordering (a business component). Search engines, firewalls, Web

servers, browsers, page displays, and telecommunication protocols are examples of

intranet-based components.

Code reusability, which makes programming faster and more accurate, is the

first of several reasons for using component-based development. Others include:

support for heterogeneous computing infrastructure and platforms; rapid assem-

bly of new business applications for quick time-to-market; and the ability of an

application to scale. And because major software vendors are committed to com-

ponent architecture, application builders can mix and match best-of-breed solu-

tions. For a methodology of evaluating component-based systems see Dahanayake

et al. (2003).

Component-Based Development of E-Commerce Applications. Plug-and-

play business application components can be “glued together” rapidly to develop

T6.4 Component-Based Development and Web Services T6.21

complex distributed applications, such as those needed for e-commerce. Compo-

nent-based EC development is gaining momentum. It is supported by Microsoft

and the Object Management Group (OMG), which have put in place many of the

standards needed to make component-based development a reality. There are

several methods that developers can use for integrating components (e.g., see

Linthicum, 2001). A logical architecture for component-based development of

e-commerce applications can be described in layers, as shown in Figure T6.6.

The Role of Component-Based Approach in Software Reuse. The efficient

development of software reuse has become a critical aspect in the overall IS strate-

gies of many organizations. An increasing number of companies have reported

reuse successes. The traditional reuse paradigm allows changes to the code that is to

be reused (“white-box reuse”). Component-based software development advocates

that components are reused as is (“black-box reuse”). Taking the black-box reuse

concept one step further is the idea of leveraging existing software using Web Ser-

vices (our next topic). Both component-based development and Web Services are

receiving growing interest among members of the IS community.

T6.22 Technology Guide A Technical View of System Analysis and Design

E-Commerce Applications

Vendor
Management

Extended Value/
Supply Chain

i-Market Customer Care

Application-
Specific

Components

Cross-
Application

Components

Common Business Objects

Distributed Object Infrastructure
Legacy Applications & Assets

Industry-
Specific

Components

Figure T6.6 Logical
architecture for
component-based
development of
e-commerce.

WEB SERVICES
IN SYSTEM
DEVELOPMENT

The major application of Web Services is systems integration. Applications need to

be integrated with databases and with other applications. Users need to interface

with the data warehouse to conduct analysis, and almost any new system needs to

be integrated with older ones. Finally, the increase of B2B and e-business activities

requires the integration of application and databases of business partners (external

integration). Because Web Services can contribute so much to systems integration,

their use is growing rapidly.

The original term for Web Services was “application services.” They are services

that are made available from a business’s server for Web users. Because of their

great interoperability and extensibility (due to the use of XML), Web Services can

be combined in a loosely coupled way in order to achieve complex operations.

Web Services simplify enterprise application integration and create new rev-

enue opportunities by enabling organizations to offer data and services to both cus-

tomers and partners. Web Services information inquiry has taken a great stride for-

ward because many companies are looking to automate business processes and get

products to market faster. The future of Web Services depends on cross-platform

interoperability and the creation of a security standard. The Web Services Interop-

erability Organization will solve these problems.

Service-oriented architecture (SOA) is a good companion to Web Services. It has

the benefit of its capacity for rapid modification. It will become an IT architecture

mainstream in the future.

Basic Concepts. There are several definitions of Web Services. Here is a typical

one: Web Services are self-contained, self-describing business and consumer modu-

lar applications, delivered over the Internet, that users can select and combine

through almost any device (from personal computers to mobile phones). By using a

set of shared protocols and standards, these applications permit different systems to

“talk” with one another—that is, to share data and services—without requiring

human beings to translate the conversations.

Specifically, a Web Service fits the following three criteria: (1) It is able to

expose and describe itself to other applications, allowing those applications to

understand what the service does. (2) It can be located by other applications via an

online directory, if the service has been registered in a proper directory. (3) It can be

invoked by the originating application by using standard protocols.

Web Services have great potential because they can be used in a variety of envi-

ronments (over the Internet, on an intranet inside a corporate firewall; on an

extranet set up by business partners) and can be written using a wide variety of

development tools. They can be made to perform a wide variety of tasks, from

automating business processes, to integrating components of an enterprisewide sys-

tem, to streamlining online buying and selling. Key to the promise of Web Services

is that, in theory, they can be used by anyone, anywhere, any time, using any hard-

ware and any software, as long as the modular software components of the services

are built using a set of key protocols.

The Key Protocols. Web Services are based on a family of key protocols (stan-

dards). These protocols are the building blocks of the Web Services platforms. The

major protocols are:

• XML. Extensible Markup Language makes it easier to exchange data among a

variety of applications and to validate and interpret such data. An XML docu-

ment describes a Web Service and includes information detailing exactly how the

Web Service can be run.

• SGML. Standard Generalized Markup Language (SGML) is a general standard

for the Internet programming languages. It is known informally as “the mother of

all Web programming languages.” It sets standards that are independent of any

type of computer or of any operating system that sends or retrieves documents. It

was developed and standardized by ISO in 1986. It does not specify any formats

but rather sets the rules. HTML, XML, and WML are its products.

• XML. XML is a WWW Consortium (W3C) standard that translates a company’s

business documents into a format understandable by another company. It is the

universal format for structured documents and data on the Web. It is intended for

open computer-to-computer communications, as it permits the efficient integra-

tion of e-commerce solutions across both the Internet and private B2B networks.

XML lets developers define the tags used in terms of the information that tagged

elements contain, rather than their appearance. XML code alone will not display

anything on the computer screen: Only the combination of the HTML code and

XML code will serve to display lists and tell the browser what the information is.

According to Microsoft, XML Web Services are the fundamental building

blocks in the move to distributed computing on the Internet. Open standards and

T6.4 Component-Based Development and Web Services T6.23

the focus on communication and collaboration among people and applications

have created an environment in which XML Web Services are becoming the plat-

form for application integration. Applications are constructed using multiple

XML Web Services from various sources that work together, regardless of where

they reside or how they were implemented. One of the primary advantages of the

XML Web Services architecture is that it allows programs written in different lan-

guages on different platforms to communicate with each other in a standards-

based way.

Industry leaders in accounting, financial reporting, and accounting software

are working with firms such as Microsoft and IBM to develop a common XML

standard for financial reporting. This major initiative, called Extensible Business

Reporting Language (XBRL), is an XML-based financial reporting language that

supports the transmission of financial reports in a format that can be processed

automatically by computers.

• SOAP. Simple Object Access Protocol is a set of rules that facilitate XML

exchange between network applications. SOAP defines a common standard that

allows different Web Services to interoperate (i.e., it enables communications,

such as allowing Visual Basic clients to access Java server). It is a platform-inde-

pendent specification that defines how messages can be sent between two soft-

ware systems through the use of XML. These messages typically follow a

Request/Response pattern (computer-to-computer).

• WSDL. The Web Services Description Language is used to create the XML doc-

ument that describes tasks performed by Web Services. It actually defines the pro-

grammatic interface of the Web Services. Tools such as VisualStudio.Net auto-

mate the process of accessing the WSDL, read it, and code the application to

reference the specific Web Service.

• UDDI. Universal Description, Discovery, and Integration allows for the creation

of public or private searchable directories of Web Services. It is the registry of

Web Services descriptions. UDDI was developed by the Organization for the

Advancement of Structured Information Systems (OASIS), which was formed by

IBM, Microsoft, Sue, and others.

• Security protocols. Several security standards are in development such as Security
Assertion Markup Language (SAML), which is a standard for authentication and

authorization. Other security standards are XML signature, XML encryption,

XKMS, and XACML.

See Cerami (2002) for a list of other protocols that are under development.

Other Web Services standards include XML Schema Definition Language,

Extensible Stylesheet Language (XSL), and Xlink.

Major Web Services development platforms include Microsoft.NET, Sun’s Java

Enterprise systems, BEA WebLogic server, and IBM WebSphere.

W3C has worked on the infrastructure of Web Services to define the architec-

ture and the core technologies for Web Services. It started XML Protocol Activity

in September 2000 to address the need of an XML-based protocol for application-

to-application messaging. In January 2002, Web Services Activity was launched for

designing a set of technologies fitting in the Web architecture in order to lead Web

Services to their full potential. It consists of three working groups (XML Protocol

Working Group, Web Services Description Working Group, and Web Services

Choreography Working Group), one interest group (Semantic Web Services Inter-

est Group), and one coordination group (Web Services Coordination Group). Web

Services Resource Guide can be found at eweek.com/slideshow_viewer/0,2393,
1=&s=1590&a=31201&po=1,00.asp and at gotdotnet.com.

T6.24 Technology Guide A Technical View of System Analysis and Design

The Notion of Web Services as Components. Traditionally, people view infor-

mation systems, including the Web, as relating to information (data) processing.Web

Services enable the Web to become a platform for applying business services as

components in IT applications. For example, user authentication, currency conver-

sion, and shipping arrangement are components of broad business processes or

applications, such as e-commerce ordering or e-procurement systems. (For further

discussion, see Stal, 2002.)

The idea of taking elementary services and gluing them together to create new

applications is not new. As we saw earlier, this is the approach of component-based

development. The problem is that earlier approaches were cumbersome and expen-

sive.According to Tabor (2002) existing component-integration technologies exhibit

problems with data format, data transmission, interoperability, inflexibility (they are

platform specific), and security. Web Services offer a fresh approach to integration.

Furthermore, business processes that are comprised of Web Services are much eas-

ier to adapt to changing customer needs and business climates than are “home-

grown” or purchased applications (Seybold, 2002).

Table T6.3 lists the advantages and some limitations of Web Services.

A Web Services Example. As a simple example of how Web Services operate,

consider an airline Web site that provides consumers with the opportunity to pur-

chase tickets online. The airline recognizes that customers also might want to rent a

car and reserve a hotel as part of their travel plans. The consumer would like the

convenience of logging onto only one system rather than three, saving time and

effort. Also, the same consumer would like to input personal information only once.

The airline does not have car rental or hotel reservation systems in place.

Instead, the airline relies on car rental and hotel partners to provide Web Services

access to their systems. The specific services the partners provide are defined by a

series of WSDL documents. When a customer makes a reservation for a car or

hotel on the airline’s Web site, SOAP messages are sent back and forth in the back-

ground between the airline’s and the partners’ servers. In setting up their systems,

there is no need for the partners to worry about the hardware or operating systems

each is running. Web Services overcome the barriers imposed by these differences.

An additional advantage for the hotel and car reservation systems is that their Web

Services can be published in a UDDI so that other businesses can take advantage

of their services.

T6.4 Component-Based Development and Web Services T6.25

TABLE T6.3 Web Services Advantages and Limitations

Advantages Disadvantages

• Greater interoperability and lower costs, due

to universal, open, text-based standards.

• Enable software running on different

platforms to communicate with each other.

• Promote modular programming and reuse of

existing software.

• Operate on existing Internet infrastructure,

so are easy and inexpensive to implement.

• Can be implemented incrementally.

• Standards still being defined.

• Require programming skill to

implement.

• Security: Applications may be

able to bypass security barriers.

Sources: Compiled from E. M. Dietel et al., Web Services Technical Introduction (Upper Saddle River,

NJ: Prentice-Hall, 2003) and from C. Shirky, Planning for Web Services (Cambridge, MA: O’Reilly and

Associates, 2002).

T6.26 Technology Guide A Technical View of System Analysis and Design

Allen, P., Realizing e-Business with Components. Boston: Addison

Wesley, 2000.

Allen, P., and S. Frost, Component-Based Development for Enterprise
Systems. Cambridge, U.K.: Cambridge University Press, 1998.

Avison, D. G., and G. Fitzgerald, Information Systems Development:
Methodologies, Techniques and Tools, 3rd ed. New York: McGraw-

Hill, 2002.

Bucken, M. W., “2000 Innovator Awards: Blue Cross & Blue Shield,”

Application Development Trends Magazine, April 2000.

Carter, J. A., “Developing e-Commerce Systems.” Upper Saddle River,

NJ: Prentice Hall, 200x.

Cerami, E., Web Services Essentials. Cambridge, MA: O’Reilly and

Associates, 2002.

Dahanayake, A., et al., “Methodology Evaluation Framework for

Component-Based System Development,” Journal of Database Man-
agement, March 2003.

Dietel, E. M., et al., Web Services Technical Introduction. Upper Saddle

River, NJ: Prentice-Hall, 2003.

Glover, S. M., e-Business: Principles and Strategies for Accountants,
2nd ed. Upper Saddle River, NJ: Prentice-Hall.

Koontz, C., “Develop a Solid E-Commerce Architecture,” e-Business
Advisor, January 2000.

Linthicum, D. S., B2B Application Integration: e-Business-Enable Your
Enterprise. Boston: Addison Wesley, 2001.

Seybold, P., An Executive Guide to Web Services. Boston, MA: Patricia

Seybold Group (psgroup.com), 2002.

Shirky, C., Planning for Web Services. Cambridge, MA: O’Reilly and

Associates, 2002.

Stal, M., “Web Services: Beyond Component-Based Computing,”

Communications of the ACM, October 2002.

Tabor R., Microsoft.Net XML Web Services. Indianapolis, IN: SAMS,

2002.

References

